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Coupled

Method for Multiconductor
Striplines with Stratified

Anisotropic Media

TOSHIHIDE KITAZAWA, SENIOR MEMBER, IEEE

~bstract —The applicability of the variational method is extended to the

generaI structure of multiconductor coupled striplines with stratified uniax-

ially anisotropic substrates. Numerical examples are presented for the

propagation constants as well as the characteristic impedances of various

types of multicoupled striplines. Numerical computations are performed

very accurately to provide sufficient precision even for tight coupling

between strips of the multiconductor systeuy the basis functions used in

the calculation are increased np to ten. Accurate numerical results reveal

the mode coupling in the multimode propagation.

I. INTRODUCTION

v ARIOUS TYPES of planar transmission lines have

recently been investigated [1]–[22] from the point of

view of applications not only in microwave and

millimeter-wave transmission lines but also in interconnec-

tions between VLSI devices. Here highly accurate analysis

is required, especially for microelectronic packaging with

high densities, where crosstalk problems are serious. There

have been a number of analytical methods for these trans-

mission lines. Among them the variational method has

been successfully applied, because it provides not only

high-precision solutions but also the upper or lower bound,

and the accuracy of the solution can be improved system-

atically by minimizing or maximizing the value. Stationary

expressions have been reported for various types of trans-

mission lines, including single and coupled striplines [1],

[2], [7]-[9], [16], [31], broadside-coupled striplines [18], [19],

[32], coplanar striplines [20], and coplanar waveguide [21],

[22] with isotropic/anisotropic media. However a varia-

tional method for more than three coupled striplines has

not yet been presented. Also, characteristic impedances of

more than three coupled striplines have not been investi-

gated in any publications.

In this paper, the applicability of the variational method

is extended to the general structure of multiconductor

coupled striplines with uniaxially anisotropic media (Fig.
1), which includes coupled microstrips, overlaid strips, and

double-layered (suspended) strips. Numerical examples are

presented for the propagation constants as well as the

characteristic impedances of various types of multiconduc-
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Fig. 1. Generrd structure of N-coupled striplines with anisotropic sub-

strates.

tor coupled striplines. The frequency-dependent solutions,

which can be obtained by extending the procedure of the

striplines with fewer than three conductors, are presented

and are compared with the quasi-static values. Numerical

computations have been carried out by applying the Ritz

procedure to the variational expressions and by using the

Galerkin procedure for the frequency-dependent solutions.

The source quantities, the charge and current distributions

on the strip, are represented in terms of the appropriate

basis functions in these computations. Tight coupling be-

tween strips used for interconnections between VLSI de-

vices with high densities markedly deforms the source

distributions on the strip, especially in the region where

the mode coupling occurs. Special care must be taken to

obtain sufficient precision for the tight coupling case.

Preliminary computations are performed by using a suffi-

cient number of basis functions (up to ten terms) to

investigate the accuracy of the numerical method. Also, the

numerical data of special cases are compared with the

available exact analytical solutions.

11. THEORY

A. Quasi-Static Equations of Multiconductor Transmission

Lines

The quasi-static characteristics of N-conductor coupled

striplines can be described in general by N

constants and N 2 characteristic impedances.

shows how these propagation parameters can

propagation

This section

be expressed
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in terms of the line constants. The characteristic im-

pedances of N-conductor coupled striplines are defined as

an extension of those for striplines with fewer than three

conductors.

The basic equations for N-conductor TEM transmission

lines are the generalized telegrapher equations [23],

[26] -[30], which can be expressed as

dV =
— —=ZI

dz

dI z
— ~=Yv (1)

VT= [Vi, V2,. o.,VN]

IT= [11,12,. . ., IN] (2)

where T denotes a transpose and ~ and I, are the voltages

and currents on the ith conductor, respectively. For loss-

less lines with uniaxially anisotropic media, one has

[Zlj= [zlJ=~oLzj

[F],= [Flj=~ocz, (3)

where L,l and Cii are the self-inductances and self-capaci-

tances per unit length, and ;ij and C,, (i # j) are the

mutual inductances and capacitances per unit length, re-

spectively.

Assuming a z variation of the form K(z)= ~Oe - ‘6= for

the voltages and 1,(z) = liOe ‘~pz for the current, the differ-

ential equations (1) reduce to the following eigenvalue

equation:

[~~+p,~]v=o (4)
.

where ~ is the unit matrix of order N. For (4) to yield

nontrivial solutions, the determinant of the coefficient

matrix must be zero. This gives the characteristic equation

for /3, and it gives 2N roots:

19=*&, +&, ”””, +&v. (5)

The general solutions for the voltage on the i th line can be

written as

K = f ~j~(A&~Bk2+ IIke
‘Jpk,) (i=l 2 ., AT)

>>””
k=l

(6)

where A, and Bi are constants, and R ik is the ratio of the

voltage of the i th strip Vi to that of the first strip VI for

the mode k:

R,k = ; for~=~k (k=l,2,..., N). (7)
1

The currents 1, are obtained by substituting (6) into (l):

I, = ~ $R,k(– A~eJ~kz + Bke-J~’z) (8)
k-l ik

where Z,k is the characteristic impedance of line i for

mode k and is given by

R,k
,;;,

——

“’=x” ;Rkik
(9)

J=~ ‘J J

where ~,J and IEl are, respectively, the cofactor and the

determinant of the impedance matrix ~.

B. Variational Expressions for the Quasi-Static Parameters

It became evident through the preceding discussion that

the quasi-static characteristics, i.e., the phase constants /3~

and the characteristic impedances Z,~, for lossless N-

coupled lines can be described in terms of line inductances

LiJ and capacitances CiJ (eqs. (5) and (9)). L,J are ob-

tained by using the self- and mulual capacitances C,, of

the case without substrates. The line capacitances C,J

should be calculated precisely to obtain highly accurate

line characteristics. In this section a method based on the

variational principle is explained.

The capacitances are defined as

Q=CV

where

[C,l cl, . .

c C22 ““”

c= !2

1“C;N C2N . . “

and the transpose of Q is

(lo)

c lN

c 2N‘1(11)

c“ NN

QT=[Q1, QZ,””., QN] (12)

where Q, is the total charge on the strip i. Equation (10)

can be solved for Y

V=DQ (13)

where D is the compliance matrix [9], [16], the inverse

matrix of the capacitance matrix

D=c-~

rDl, ‘1, ““” ‘ld

I
D12 D22 “ “ . D,N

D= .

‘1

(14)

D;N D2N . . . D;N

In the following, variational expressions for the compli-

ance matrix elements are derived for the general structure

of asymmetrical N-coupled striplines with uniaxially

anisotropic media (Fig. 1), which enables one to calculate

the quasi-static characteristics, ~~ and Z,k, accurately. The

formulation can be performed by extending the procedure

used for three-line coupled striplines [16], and the hypo-

thetical sidewalls [31], [32] are not introduced in the formu-
lation.

The tensor permittivity of the ith layer of the stratified

anisotropic media is given as

(15)
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The potential distribution at the strip plane can be

obtained by using the extended version of the method in

[9], [16], and [22]:

O(X) =~~ ~~G(q; xlx’)u(x’)dadx’ (:
–m o

where O(x) is the charge distribution on the strips and

1 1
G(a; xlx’)=—”

moa Yu(a) + YL(a)
Cos{a(x–x’)}

6)

(17)

Yu and Y~ can be obtained by utilizing the simple recur-

rent relation proposed in [22].

The function +(x) should be constant over the strip

conductors:

q(x)=~ (i=l,2,..., N). (18)

We consider the following sets of excitations:

Q,#O Qj=O (j#i) (19a)

to determine D,,, and

Q,= QJ#O Q,=O (k#i, j) (19b)

to determine D,j. From (16), (18), and (19a), we obtain

O=q U(x)dx
W2

‘~w2j:~mU(X)G(~;X,X’) O(x’)dadx’dx (20)—

O=VNJ u(x)dx
l’i~

‘/wNj:m~mU(X)G(a;X,x’) a(x’)dadxdx

by utilizing

Q1=fwu(x)dx#O
1

Qz=~wu(x)dx=O (i=2,..., N). (21)
,

Therefore, we get

~11 .5

QI Q,=O (,#l)

=jj:m~mU(X)G(a; X,X)O(Xf)dadXtiX\Q:. (22)

It can easily be shown that (22) has a stationary property

and that it gives an upper bound to the exact value of D1l.

Expressions for the diagonal elements Dzz,. . . . D~~ can

be obtained similarly. By using an analogous procedure

applied to (16), (18), and (19b), we obtain an expression

for D,, + 2D,J + Dlj, which resembles (22), and it provides

the off-diagonal elements, e.g. D,j.

C. Hybrid-Mode Analysis Based on Galerkin’s Method

The hybrid-mode formulation can be performed for

asymmetrical N-coupled striplines with uniaxially ani-

sotropic substrates cut with their planar surface perpendic-

ular to the optical axis by extending the procedure used in

[8], [9], and [16]. The electromagnetic fields are expressed

in terms of the current densities iX( x ) and i,(x) on the

strip conductors, and no approximations for simplification

are included in the formulation procedure. The method of

solution for the propagation constants is based on

Galerkin’s procedure with appropriate basis functions used

to express the unknown currents iX(x) and i=(x).

There is some ambiguity in the definition of the fre-

quency-dependent characteristic impedances of striplines

because of the hybrid-mode propagation, and several pos-

sible definitions have been proposed for single and two

coupled striplines, e.g., the power–current [8], [24], volt-

age–current [25], and power–voltage [24] definitions. How-

ever, for the case of more than three coupled lines, the

characteristic impedances based on the power flow do not

have much meaning, because the total power flow cannot

be allocated to the individual strips properly. The defini-

tion chosen here is on the voltage–current basis, i.e.,

Z,k = ~
lk

(23)

where ~~ and I,k are the voltage at the center of strip i

and the total current on strip i for mode k, respectively.

III. NUMERICAL EXAMPLES

Numerical computations have been carried out by using

the Ritz procedure for the quasi-static and the Galerkin

procedure for the frequency-dependent hybrid-mode anal-

ysis. The accuracy of these computations depends on a

reasonable choice of the basis functions which are used to

represent the unknown quantites. These basis functions

must incorporate the edge effect properly, they must be

Fourier integrable analytically, and, especially for the cases
of coupled multistrip lines, they must satisfy the excitation
conditions (19) efficiently. We build up the following basis

functions of the i th strip:

for the charge densities and the z components of the
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TABLE I

NORMALIZED LINE CAPACITANCEOFTkREE-LINE COUPLED
STRIPSWITIiOUT SUBSTRATEG/eO

TABLE III

QUASI-STATIC CHARACTERISTICSOFFIVE COUPLED
MICROSTRIPS(Cff

Even (Error 7.) Odd (Error 7.)N

1

node 4

5.6719
5.6166
5.6123
5.6126
5.6126
5.6126
5.6126
5.6126
5.6126
5.6126

N mode 1

8.1066
8.0808
8.1093
8.1094
8.1095
8.1095
8.1095
8.1095
8.1095
8.1095

mode 3 mod,? 5 mode 2

2.1478
2.4092
2.5078
2.5115
2.5150
2.5151
2.5153
2.5153
2.5155
2.5153

(14.61) 2.6605 (25.74)
3.5433 ( 1.09)
3.5592 ( 0.65)
3.5808 ( 0.05)
3.5812 ( 0.04)
3.5822 ( 0.01)
3.5822 ( 0.01)
3.5823 ( 0.01)
3.5824 ( 0.00)
3.5824 ( 0.00)

1
2
3
4
5
6
7
8
9

10

5.9761
5.8585
5.8560
5.8563
5.8563
5.8563
5.8563
5.8563
5.8563
5.8563

5.5’511
5.5377
5.5:%45
5.5.)46
5.5:%46
5.5:)46
5.5:)46
5.5:)46
5.5:)46
5.5:)46

6.6485
6.5208
6.5272
6.5273
6.5273
6.5273
6.5273
6.5273
6.5273
6.5273

2
3

i 4.22j
( 0.30)

4
5
6
7
8
9

10

Exact Value
by Con formal
Mapping
(Appendix I)

( 0.15)
( 0.01)
( 0.01)
( 0.00)
( 0.00)
( 0.00)
( 0.00)

2.5153 3.5825
s s c-1 s

dl
w w w w w

El
s s

——

WI w~ w,

w2/wl=l.5; s/wl=o.l.

TABLE II

QUASI-STATICCHARACTEFUSTICSOFFOUR

CIXX=lO, 61Y”=10! qxv =0, ,s/w=o.2, dl/w=l

TABLE IV

HYBRID-MODE SOLUTIONSOF FIVE-COUPLEDMICROSTRIPSc,ff

N mode 1

I
mode 2 mode 4

7.2167 6.1949
6.5450 5.6533
6.5431 5.6176
6.5399 5.6142
6.5399 5.6139
6.5399 5.6139
6.5399 5.6139
6.5399 5.6139
6.5399 5.6139
6.5399 5.6139

6.533 5.630

mode 3 mode 5

5.:1207
5.6126
5.!1364
5.!>359
5.!!352
5.5352
5.’)352
5.’i352
5.’;352
5. ‘5352

5.’560

COUPLEDMICROSTRIPSC.ff

1
2
3
4
5
6
7
8
9

10

8.3208
8.2151
8.1722
8.1719
8.1718
8.1718
8.1718
8.1718
8.1718
8.1718

6.7330
5.8666
5.8649
5.8600
5.8600
5.8600
5.8600
5.8600
5.8600
5.8600

mode 1

9.0455
9.0055
9.0647
9.0651
9.0654
9.0654
9.0654
9.0654
9.0654
9.0654

mode 3

6.2829
6.1216
6.1126
6.1135
6.1135
6.1135
6.1135
6.1135
6.1135
6.1135

mode 2

7.1433
6.8748
6.8754
6.8755
6.8754
6.8754
6.8754
6.8754
6.8754
6.8754

S1

mode 4 I

[

1
2
3
4
5
6
7
8
9

10 1
5.9049
5.8572
5.8388
5.8391
5.8392
5.8392
5.8392
5.8392
5.8392
5.8392

co

I Ref. [17] 5.8688.305

W= l(mm), ~ = l(GHz)
Other dimensions are the same as in Table 111.

Sf S2

dl WI W2 W2 WI $ second integral on the right car be expressed in closed

form, while the first on the right converges rapidly com-

pared to the integral on the left, and accurate values can

be obtained numerically.

For the cases of multiple coupled striplines used for

interconnections between VLSI devices with high densities,

tight coupling between strips deforms the charge and cur-

rent distributions on the strip to an unusual extent, which

requires more basis functions to (express unknown quanti-

ties. Some preliminary computations were performed to

investigate the convergence of the calculated results with

respect to the number of basis functions. The convergence

of the quasi-static values is demonstrated in Table I, which

shows the normalized line capacitances of three-line cou-

pled strips without substrates or ground conductors, for

which the exact analytical solutions can be obtained by

conformal mapping (see the Appendix). It should be noted

that (24) gives an upper bound to the compliance; hence

the values in Table I are lower than the exact values.

However as the number of basis functions increases, the

values become larger approaching the exact value, and

using more than five terms can afford rigorous solutions

even for the very tight coupling cases considered here.
Tables II and III demonstrate the convergence of the

effective dielectric constants of the four-strip case with

anisotropic substrate and of the five-strip case with

CIXX= 9.4, CIYV= 11.6, CIXY= O, W2/Wl = 1.2, S1/Wl = 0.2, $/Wl =

0.1, dl/wl =1.

currents, and

()2(x – c,)
fi’,k(x) = ‘k-1 ~

1

(25)

Tk(x) andfor the x components of the currents, where

Uk(x) are Chebyshev polynomials of the first and second

kind, respectively, and Ci is the center of the ith strip. It

should be noted that the integral of jjk (x) over the i th

strip conductor becomes zero, except that of jll(x), and

the excitation requirements (19) are easily met by using

(24). For the cases of multiple coupled striplines, many

semi-infinite integrals should be calculated numerically.

The convergence of the semi-infinite integrals becomes

slower with the complete set of basis functions such as (24)

and (25) than with the simpler set of functions [31]. How-

ever, it is possible to improve the rate of convergence of

the integrals by the following procedure:

“J
co

Gala= J*(G –G~)dci+ j“Gm da (26)
o 0 0

where G@ is an approximation of G for large a. The
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Fig. 2. Quasi-static characteristics of three coupled suspended strips. (a)
Effective dielectric constants. (b) Characteristic impedances. CIXX= 13,

%yv = 10.2., E*XX = C2”Y = 1, <,x) = o (2=1, 2); w*/w~ =1.5, S/wl=
0.2, dl/wl =1.

isotropic substrate, respectively. The exact analytical solu-

tions are not available in these cases, but rapid conver-

gence is observed.

Table IV demonstrates the convergence of the hybrid-

mode values for five coupled striplines with the same

dimensions as in Table III. The number of basis functions

N, which are used to express both unknown currents, iX(x)

and iz(x ), is increased up to N =10 in these computations.

The convergence of the hybrid-mode values is very fast

&o

dl s, S2 s, i,

% w W2 W2 w i2

/

I I 1 1

0 0.2 0.4 0.6 0.8 1.0

%2

Fig. 3. Quasi-static characteristics of four coupled overlaid strips.
<IX. = 13, c1“Y = 10.2, czX.t= 9.4, Czyy= 11.6. Cuy =O(i=l,2); W2/W1
=1.2, sl/wl= 0.2, L+/wl = 0.1, 6?2/wl =1.

9

8

6

5
0

s s s s h

w
d,

w w w w
51

\

mode 1

.
~Nmode 2

\
‘..,

‘<
mode 3 ‘\

‘A
----
IL

~.>

t ~~

motie 4

mode 5
-.. .

0,1 0.2 0.3
‘2/d~

—

Fig 4. Quasi-static characteristics of five coupled double-layered strips.

CIXX=10, q,, =10, t2XX = 2.6, .,,, = 2.6, C,IY = O (, =1, 2); S/W=
0.2, dl/w=l,
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Fig. 5. Dispersion characteristics of three coupled microstrips. (a) Ef-

fective dielectric constants. (b) Characteristic impedances. Dimensions
are the same as in Fig. 2, except d2 = O. —, ---– hybrid-mode;

— .— quasi-static.
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Fig. 6. Dispersion characteristics of four coupled microstrips. Dimen-

sions are the same as in Fig. 3, except dl = O. —, ––––
mode; — .— quasi-static.

hybrid-

10

9

8

6

5 ~~
o .02 .04 .06 .08 .10 .12

wl~

Fig. 7. Dispersion characteristics of five coupled microstrips. Dimen-
sions are the same as in Fig. 4, except dz = 0. —, –––– hybrid-

mode; — .— quasi-static.
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too. Also, the computed values are compared with those

from [17] in Table IV.

Various types of striplines can be treated by the present

method. Fig. 2 shows the line parameters of three coupled

suspended strips with different spacing between the sub-

strate and the ground conductor. Modes are designated for

the microstrip case (dJdl = O). Fig. 3 shows those of four

coupled overlaid strips. Fig. 4 shows those of five coupled

double-layered strips. Mode coupling is observed in these

figures, e.g., the coupling between mode 1 and mode 3 of

three coupled suspended strips (Fig. 2(a) and (b)) occurs in

the region of spacing dz /dl = 0.05, where the phase con-

stants of the modes have close values but never coincide,

which produces the unusual curves. Modes cannot be

identified in these regions, and the characteristic imped-

ances do not have definite values (Fig 2(b)).

The quasi-static and frequency-dependent characteristics

are compared in Figs. 5–7. Fig. 5 shows the effective

dielectric constants and the characteristic impedance of

three coupled microstrips on an anisotropic substrate. It

should be noted that the frequency-dependent values of

characteristic impedances based on the above definition

converge to the corresponding quasi-static values in lower

frequency ranges precisely (Fig. 5(b)), showing the validity

of the definition chosen. Also, it is observed that the

frequency-dependent values of the effective dielectric con-

stants converge precisely to the quasi-static values for the

three, four, and five coupled strip cases in Fig. 5(a), Fig. 6,

and Fig. 7, respectively.

IV. CONCLUSIONS

The variational method is presented for the propagation

characteristics of the general structure of multiconductor

coupled striplines with uniaxially anisotropic media. An

accurate numerical procedure, which can provide sufficient

precision even for tight coupling between strips used as

interconnections between VLSI devices, is demonstrated.

Numerical examples are presented for various types of

multiple coupled striplines. Numerical results with high

precision show for the first time the mode coupling in the

multimode propagation, which causes the unusual curves.

Also, the frequency-dependent values of the effective di-

electric constants as well as the characteristic impedances,

based on a properly chosen definition, converge to the

corresponding quasi-static values in lower frequency ranges

precisely, showing the accuracy of the method.

APPENDIX

The exact values of the line capacitances of symmetrical

three-line coupled strips without substrates or ground con-

ductors (Fig 8(a)) can be obtained by conformal mapping.

Fig. 8(a)–(e) shows the series of transformations to obtain

the analytical solution of the even mode. The determinan-

tal equation for kz = p2/q2 in Fig. 8(d) is

-F(arcsin(akJ+K’kJ=F@csin’kJkJ
ko=ao/bo

. . ..— —— ——————.
-co -bo - do o a. b. Co

(a)

cl+jbl al+jbl
~.———,

o
1
al

(b)

-ql+Jrl ql+jrl

Pl= al-cl

ql = al

L–––J–––J

-Cll -PI o P1 ql
rl = bl

(c)

—–*– –x–—

-r2 -q2 -p2 O P2 q2 r2

(d)

-P3+jr3 P3+jr3

~

-P3 P3

(e)

Fig. 8. A series of transformations for the even mode of symmetrical

three coupled strips, — electric wall; –––– magnetic wall.

where F( a, b) is the elliptic integral of the first kind and

K(k) is the complete elliptic integral of the first kind.

Then, p3 and V3 in Fig. 8(e) can be determined as

p~ = CK(kok2) r3 = CK’(kok2)

C: constant.

The analytical solution of the odd mode can be obtained

in similar fashion.
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